|
|
@ -23,11 +23,6 @@ def cm2inch(*tupl): |
|
|
|
# %% Countries |
|
|
|
|
|
|
|
countries = { |
|
|
|
'cn': {'name': 'China'}, |
|
|
|
'it': {'name': 'Italy'}, |
|
|
|
'fr': {'name': 'France'}, |
|
|
|
'de': {'name': 'Germany'}, |
|
|
|
'us': {'name': 'USA'}, |
|
|
|
'uk': {'name': 'UK'} |
|
|
|
} |
|
|
|
|
|
|
@ -41,9 +36,9 @@ for country_code, country_data in countries.items(): |
|
|
|
df.index = pd.to_datetime(df.index) |
|
|
|
|
|
|
|
# Process data |
|
|
|
df['daily_deaths'] = df['deaths'].diff().abs() # .abs() dirty trick to prevent negative outliers |
|
|
|
df['daily_deaths_avg'] = df['daily_deaths'].rolling(7).mean() |
|
|
|
df['death_change'] = df['daily_deaths_avg'].diff() |
|
|
|
df['daily_cases'] = df['cases'].diff().abs() # .abs() dirty trick to prevent negative outliers |
|
|
|
df['daily_cases_avg'] = df['daily_cases'].rolling(7).mean() |
|
|
|
df['cases_change'] = df['daily_cases_avg'].diff() |
|
|
|
|
|
|
|
# Smoothing |
|
|
|
df = df.resample('4H').asfreq() |
|
|
@ -57,22 +52,37 @@ fig, ax = plt.subplots(figsize=cm2inch(15,15)) |
|
|
|
|
|
|
|
for country_code, country_data in countries.items(): |
|
|
|
df = country_data['dataframe'] |
|
|
|
line, = ax.plot(df['death_change'], df['daily_deaths_avg'], lw=0.5, label=country_data['name']) |
|
|
|
#plt.plot(df['death_change'], df['daily_deaths_avg'], 'ob') # dots for debugging |
|
|
|
line, = ax.plot( |
|
|
|
df['cases_change'], |
|
|
|
df['daily_cases_avg'], |
|
|
|
lw=0.5, label=country_data['name']) |
|
|
|
# select which dates to label |
|
|
|
df['month'] = df.index.month |
|
|
|
df['month_change'] = df['month'].diff() |
|
|
|
dates = df['month_change'] == 1 |
|
|
|
for index, row in df[dates].iterrows(): |
|
|
|
month_start = df['month_change'] == 1 |
|
|
|
mar_onwards = df['month'] >= 3 |
|
|
|
labeldates = pd.concat([df[month_start & mar_onwards], df.tail(1)]) |
|
|
|
# date labels |
|
|
|
for index, row in labeldates.iterrows(): |
|
|
|
date_text = row.name.strftime(format='%d %b') |
|
|
|
ax.annotate(date_text, |
|
|
|
(row['death_change'], row['daily_deaths_avg']), |
|
|
|
color=line.get_color()) |
|
|
|
xy=(row['cases_change'], row['daily_cases_avg']), |
|
|
|
xycoords='data', |
|
|
|
xytext=(0,10), |
|
|
|
textcoords='offset points', |
|
|
|
ha='center', |
|
|
|
color=line.get_color(), |
|
|
|
bbox=dict(boxstyle='square, pad=0.5', alpha=0.7, fc='white', ec='white')) |
|
|
|
# date markers |
|
|
|
ax.scatter(row['cases_change'], row['daily_cases_avg'], color=line.get_color(), s=4) |
|
|
|
|
|
|
|
|
|
|
|
plt.axvline(x=0, c='black', lw=1, ls=':') |
|
|
|
ax.spines['top'].set_visible(False) |
|
|
|
ax.spines['right'].set_visible(False) |
|
|
|
|
|
|
|
ax.set(ylabel="Daily COVID-19 Cases", xlabel="Increase or decrease in cases per day") |
|
|
|
|
|
|
|
ax.legend(loc='upper center', ncol=3, bbox_to_anchor=(0.5,1.15)) |
|
|
|
|
|
|
|
plt.show() |
|
|
|